

LXP-M85-02D

SFP 10Gb/s 850nm Multi-mode 300m DDM

PRODUCT FEATURES

- Compliant to SFP+ MSA
- Fully ROHS Compliant
- All metal housing for superior EMI performance
- Operating data rate from 8.5Gbps to 10Gbps
- VCSEL 850nm Laser
- High sensitivity PIN photodiode and TIA
- Up to 300m
- LC duplex connector
- Hot pluggable 20pin connector
- Low power consumption < 1.0W
- 0°C to 70°C operating wide temperature range
- Single $+3.3V \pm 5\%$ power supply
- Digital Diagnostic Monitoring sff-8472 Rev 10.2 compliant

APPLICATIONS

- 10GBASE –SR
- 8.5G/10.5G/s Fiber Channel

Compliance

- IEEE 802.3ae 10GBASE –SR
- SFF-8431 Rev 3.0
- SFF-8472 Rev 10.2
- FC-PI-4 Rev 7.0

PRODUCT DESCRIPTION

The LXP-M85-02D 850nm 10Gigabit Transceiver is designed to transmitter and receive serial optical data over multi mode optical fiber with 300m.

The transmitter convets serial CML electrical data into serial opticaldata compliant with the IEEE802.3ae standard.An open collector compatible Transmit Disable (Tx_Dis)is provided .When Tx_ Dis is asserted high,Transmitter is turned off .

The receiver converts serial optical data into serial CML electrical data .An open collector compatible loss of signal is provided .The RX_ LOS signal indicates insufficient optical power for reliable signal reception at the receiver. Digital diagnostics functions are available via 2-wire serial interface ,as specified in sff-8472 .

The optical output can be disabled by a TTL logic high-level input of Tx Disable, and the system also can disable the module via I2C. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver or the link status with partner. The system can also get the LOS (or Link)/Disable/Fault information via I2C register access.

Ordering information

Part No	package	Data rate	Optical Power	Temp	Reach	other
LXP-M85-02D	SFP+	10Gbps	-1 \sim -5dBm	0∼70°C	300m	DDM

I. Absolute Maximum Ratings

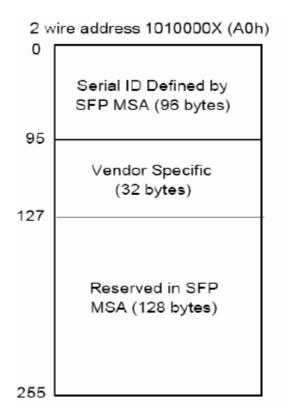
Parameter	Symbol	Min.	Тур.	Max.	Unit	Ref.
Storage Temperature	Ts	-40		85	٥С	
Storage Ambient Humidity	H _A	5		95	%	

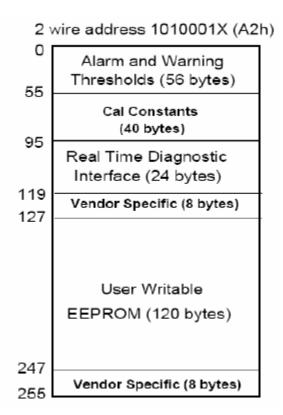
II. Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Case Operating Temperature	Tcase	0		70	°C	
Ambient Humidity	HA	5		70	%	Non-condensing
Power Supply Voltage	VCC	3.13	3.3	3.47	V	
Bit Rate	BR	8.5	10.3	10.5	Gb/s	
Bit Error Ratio	BER				10-12	
Max Supported link Length						
Coupled Fiber		М	ulti mode fiber	•		50/125um MMF

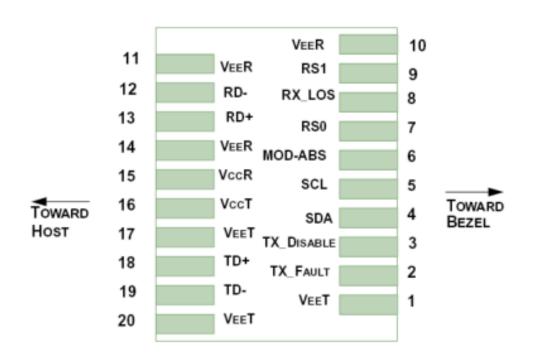
III. Optical Characteristics(Tc =0 $^{\circ}$ C to 70 $^{\circ}$ C and Vcc= 3.14V to 3.46V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note	
Transmitter							
Nominal Wavelength	λ	840	850	860	nm		
Spectral width	Δλ			0.85	nm		
Optical Modulation Amplitude	Poma	-5			dBm		
Optical Output Power	Pav	-5		-1	dBm		
Extinction Ratio	ER	3.0			dB		
Transmitter and Dispersion Penalty	TDP			3.9	dB		
Launch Power in OMA Minus TDP		-6.2			dBm		
Average Launch Power of OFF	Do#			25	ID		
Transmitter	Poff			-35	dBm		
Relative Intensity Noise	Rin			-128	dB/HZ		
Optical Return Loss Tolerance	ORLT			12	dB		
	Rece	eiver					
Center Wavelength	λ	840	850	860	nm		
Average Receiver Power	Pavg			-9.9	dBm	1	
Receiver Optial Return Loss	ORL	-11			dB		
Receiver Saturation	Rsat	0			dBm		
Los Assert LOS	LOSd	-30			dBm		
Los De-Assert LOS	LOSa			-12	dBm		
Los Hysteresis		0.5			dB		


Note (1): Sensitivity for 10.3G PRBS 2*23-1 and BER better than or equal to 10E-12 .

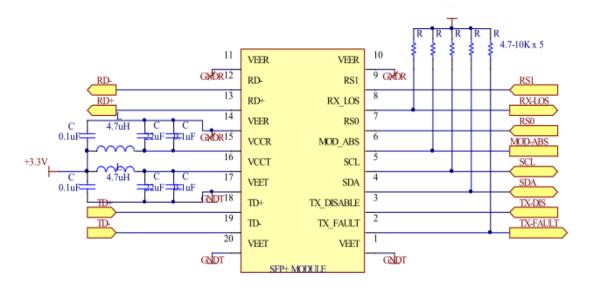

IV. Electircal Characteristics (Tc =0 $^{\circ}$ C to 70 $^{\circ}$ C and Vcc= 3.14 to 3.46)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Supply Voltage	Vcc	3.14	3.3	3.46	V	
Supply Current	Icc			300	mA	
	Trans	mitter				
Input Differential Impedance	Rin	80	100	120	Ω	
Differential Data Input Swing	Vin	100		1000	mVp-p	
Transmit Disable Voltage	Vdis	2			V	
Transmit Enable Voltage	Ven	Vee		Vee+0.8	V	
Transmit Fault Assert Voltage	Vfa	2.2			V	
Transmit Fault De-Assert Voltage	Vfda	Vee		Vee+0.4	V	
	Rece	eiver				
Differential Data Output Swing	Vod	300	600	840	mVp-p	
Output Rise Time	Trise		25		ps	20%~80%
Output Fall Time	Tfall		25		ps	20%~80%
LOS Fault	Vlosft	2		Vcc	V	
LOS Normal	Vlosnr	Vee		Vee+0.8	V	

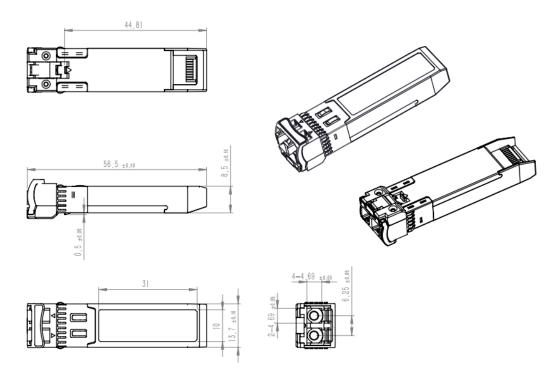


V. Digital Diagnostic Memory Map

VI. Pin Diagram


VII. Pin Descriptions

Pin	Symbol	Name	Description
1,17,20	VeeT	Transmitter Signal Ground	These pins should be connected to signal ground
1,17,20	veei	Transmitter Signal Ground	on the host board.
			Logic"1"Output=Laser Fault(Laser off before t_fault)
2	TX	Transmitter Fault Out (OC)	Logic"0"Output=Normal Operation
	Fault	Transmitter Fault Out (OO)	This pin is open collector compatible, and should be pulled
			up to Host Vcc with a 10kΩ resistor
			Logic "1"Input(or no connection)=laser off
3	TX	Transmitter Disable In	Logic "0"Input = Laser on
	Disable	(LVTTL)	This pin is internally pulled up to VccT with a 10kΩ
			resistor
4	SDA		Serial ID with SFF-8472 Diagnostics
5	SCL	Module Definition Identifiers	Module Definition pins should be pulled up to Host Vcc
6	MOD-		with 10 k Ω resistors.
	ABS		
7	RS0	ReceiverRateSelect(LVTTL)	These pins have an internal 30 k Ω pull-down to ground. A
9	RS1	Transmitter Rate	Signal on either of these pins will not affect module
		Select(LVTTL)	performance.
			Sufficient optical signal for potential
			BER<1x10-12=Logic "0"
8	LOS	Loss of signal Out(OC) BER<1x10	Insufficient optical signal for potential
			BER<1x10-12=Logic "1"
			This pin is open collector compatible ,and should be
			pulled up to Host Vcc with a 10 kΩ resistor
			This pins should be connected to signal ground on the
10,11,14	VeeR	Receiver Signal Ground	host
			board.
40	-	Receiver Negative Data	Light on = Logic "0"Output Receiver Data output is
12	RD-	Out(CML)	internally AC coupled and series terminated with a
			50Ω resistor.
40	DD.	Receiver Positive Data	Light on = Logic "1"Output Receiver Data output is
13	RD+	Out(CML)	internally AC coupled and series terminated with a
			50Ω resistor.
15	\/osD	Desciver Dewer County	This pin should be connected to a filtered +3.3V power
15	VccR	Receiver Power Supply	supply on the host board .See Figure3.Recommended
			power supply filter This pip should be connected to a filtered 12.2V power.
16	\/a-T	VacT Transmitter Brown County	This pin should be connected to a filtered +3.3V power
16	VccT	Transmitter Power Supply	supply on the host board .See Figure3.Recommended
			power supply filter Logic "1"Input =light on Transmitter Data inputs are
18	TD+	Transmitter Positive Data In	internally AC coupled and terminated with a differential
10	+טו	(CML)	Internally AC coupled and terminated with a differential 100Ω resistor
			TOOM TESISIOI



		TD- Transmitter Negative Data In(CML)	Logic "0"Input =light on Transmitter Data inputs are			
19	TD-		internally AC coupled and terminated with a differential			
			100Ω resistor			

VIII. Tyical application circuit

IX. Mechanical Specifications(Unit: mm)

Revision History

Version No.	Date	Description
1.0	June 24, 2021	Preliminary datasheet

Contact:

Add: Building 7, Mobile Terminal Industrial Park, East Lake Comprehensive Bonded Zone, 777 Optics Valley 3 Road, East

Lake New Technology Development Zone, Wuhan, China

Tel: (+86) 86-27-88870005

Postal: 430205

E-mail:sales@lightrend.com http://www. lightrend.com